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GENERALIZED RING STIFFNESS MATRIX FOR
RING-STIFFENED SHELLS OF REVOLUTION

By George E. Weeks and Joseph E. Walz
Langley Research Center

SUMMARY

A generalized set of nonlinear boundary conditions and ring stiffness coefficients
are derived for a shell of revolution with an elastic ring of arbitrary cross section
attached to its boundary in an arbitrary manner. The effects of shear deformation, inter-
nal pressure, eccentricity, restraint of warping, torsion, out-of-plane bending, and pre-
stress of the ring are included in the analysis. The boundary conditions are applicable to
shells with an axisymmetric initial equilibrium state of stress and deformation which are
subject to small asymmetric deflections away from the initial state due to either bifurca-
tion buckling or the addition of an asymmetric load. The results are presented in a form
which can be easily introduced into a computer program for shells of revolution.

INTRODUCTION

Shells of revolution with rings attached at the boundaries are common structural
elements in aerospace vehicles. A typical example is the envelope or "aeroshell" of a
spacecraft designed for entry into a planetary atmosphere. The analysis and design of
such structural elements require a knowledge of the edge restraint or boundary conditions
on the shell provided by an elastic ring of arbitrary cross section. However, because the
stiffness characteristics of an arbitrary ring are very complex and lead to complicated
boundary conditions for the shell to which the ring is attached, analytical procedures for
taking into account ring behavior are usually based on approximate and many times inad-
equate theory.

At the time this study was initiated, the most comprehensive treatment of ring
boundary conditions in the literature was given by Cohen who presented in reference 1 the
boundary conditions for an arbitrary shell of revolution with an elastic ring of arbitrary
cross section attached to its boundary. Effects of prestress, shear deformation, and
restraint of warping in the ring were neglected. Later in reference 2, Cohen included
some prestress effects, but still, his analysis is only applicable to a ring whose shear
center and centroid coincide, and in addition, the normal to the shell at the point of



attachment must pass through the ring centroid. The present theory does not have these
restrictions and has been developed independently of the theory of reference 1.

The purpose of this paper is (1) to present the assumptions and theoretical develop-
ment of a ring theory for the nonlinear boundary conditions of a general shell of revolu~
tion with an elastic ring of arbitrary cross section attached to its boundary, (2) to present
the resulting equations (ring stiffness coefficients) in a form which can be easily incorpo-
rated into a computer program for shells of revolution, and (3) to demonstrate the use of
the equations with selected results which show the influence of ring flexibility and ring
eccentricity. The ring theory is general and includes shear deformation, restraint of
warping, out-of-plane bending, eccentricity, internal pressure, torsion, and axisymmetric
prestress of the ring. (For stress analysis, ring prestress refers to any initial internal
load in the ring with no external load on the shell. For stability analysis, ring prestress
also includes internal loading in the ring prior to buckling due to the prebuckling deforma-
tion of the shell from applied loads.)

The ring theory is derived on the basis of the total potential energy of the ring. The
energy of restraint of warping and torsion are included in an approximate manner similar

to that of straight-beam theory whereas the energy of bending and extension are consid-
ered rigorously. The results are also applicable, with certain noted exceptions, to the

special but important case of a pressurized ring of closed cross section.
SYMBOLS
The units used for the physical quantities defined in this paper are given both in the

U.S. Customary Units and in the International System of Units (SI) (ref. 3). Conversion
factors pertinent to the present analysis are presented in appendix A.

A,B,C,D,F functions of displacement variables (see egs. (3))

Ay cross-sectional area of ring

Ay area enclosed by ring of closed cross section

a4 geometrical expressions defined by equations (B3); i =1,2,3,4,5

bj constants defined by equations (B5) and (C14) which relate ring variables to

shell variables; i=1,2,...,21

E Young's modulus of ring and shell



€5 circumferential strain of centroidal axis of ring

€x,ey thickness-compression strains at any point in ring cross section
€xz,Cyz,Cyx shear strains at any point in ring cross section

ey circumferential strain at any point in ring cross section

¥, Fg,Fy middle-surface stress resultants at shell boundary in cylindrical

coordinate system (see fig. 1)

G shear modulus
Gij elements of 4 X 4 stiffness matrix
Eij ,A:E’ij,B ring stiffness coefficients defined by equations (E1) and (E2), respectively

Gij = Gij,a + Gij,B
h thickness of shell wall

Ix,15,Ixz moments and product of inertia of ring cross section with respect to ring
coordinate system

J torsional constant of ring cross section

A elements of 4 X 1 column matrix in boundary-condition equation identified by
external loadings

My ,My bending moments in ring

My meridional bending-moment resultant in shell

my nondimensional meridional bending-moment resultant in shell, M%n)/qnh2

N hoop force in ring

Nn,Q77 middle-surface stress resultants in shell with respect to intrinsic coordinate

system (see fig. F1)



rg,fe

Fourier index

internal pressure in ring

geometrical expressions defined by equations (D2); i=1,2,. . .,28
generalized forces defined by equations (D1); i = 1,2,3,4,5,6

Fourier coefficient in expansion for normal pressure on conical shell
constant radial line loading

radius of curvature of shell which generates shell circumference

radius of middle surface of shell at any point along shell meridian (see fig. 1)
radius of middle surface of conical shell at large end

radius of line of shear centers and line of centroids of ring cross section,
respectively
GArr%
2EI,

shear-stiffness parameter,

meridional distance measured from large end of conical shell
total meridional distance of conical shell

EArr%

extensional-stiffness parameter,

nondimensional meridional stress resultant, N%nyano
potential energy of external forces applied to ring
potential energy of pressurizing gas

total strain energy of ring



U4,U2,U03 '
u,v,w
Ug,Va,Wq
Up,Vp,Wp

Ug,Vg,Wg

!

21

x,Y’Z

XgyZe

th
N1

Zgh

Ny

strain energy of ring bending and extension, restraint of warping, and
shear, respectively

axial, circumferential, and radial displacements, respectively, of shell
middle surface in cylindrical coordinate system (see fig. 1)

axial, circumferential, and radial displacements, respectively, of any
point in ring cross section in cylindrical coordinate system

axial, circumferential, and radial displacements, respectively, of any
point in shell wall in cylindrical coordinate system (see fig. B2)

-axial, circumferential, and radial displacements, respectively, of shear
center of ring in cylindrical coordinate system (see fig. B1)

meridional and normal displacements, respectively, of shell middle surface
in intrinsic coordinate system (see fig. F1)

Eh_(n)

anTo

nondimensional normal displacement,

ring coordinate system (see fig. B1)

axial and radial distance, respectively, from ring shear center to centroid
(see tig. B3)

axial and radial distance, respectively, from ring shear center to point of
attachment of ring to shell (see fig. B3)

eccentricity of ring centroid normal to shell middle surface measured
positively along outward normal

normal distance from shell middle surface in intrinsic coordinate system to
point of attachment of ring to shell

distance of shell displacements Up, Vp,and Wwp from shell middle surface
angle which meridian line of shell makes with radial direction (see fig. F1)

rotation of ring cross section about axis of ring shear center (see fig. B1)



I warping constant of straight-beam theory

yyx’yyz Timoshenko-type ring transverse shear strains

0 operator which indicates variation of variable or function

¢ angle of twist of ring cross section with respect to its shear center
n meridional coordinate

uh quantities defined by equations (C3b) to (C3f); i=1,2,3,4,5
e circumferential coordinate

A= % + o

E=C + A’

0] rotation of shell appearing in equation (B2)

Subscripts:

A initial equilibrium state

B incremental equilibrium state

Superscript:

(n) Fourier coefficient of indicated variable

A prime indicates a derivative with respect to the circumferential coordinate 6.
ANALYSIS

Statement of the Problem

The most general boundary conditions for a shell of revolution supported by some
generalized unloaded elastic medium at its boundaries can be written in the following con-
venient matrix form (see, for instance, ref. 1):



- ~ o o
Fa) [G11 G12 Giz Guaffw 3|

r ¢ ) = = { > (1)
LMnJ Symmetric G4ﬁ \‘qu 7
- "

The Gjj are stiffness coefficients which define the stiffness characteristics of the sup-
porting medium; u, v, w,and ¢ are the middle-surface shell variables and F,, Fy,
and F, are stress resultants at the shell

boundary in the axial, circumferential, and a’
radial directions, respectively. The quan-~ My ©

tity M, is the moment per unit length r F.ow
imposed on the shell boundary by the elas-
tic support which produces a rotation about

a tangent to the circumference. Here, all
terms are referred to the cylindrical coor- ¢
dinate system shown in figure 1 and the |
positive sign in equations (1) applies if the Shell meridian
ring is connected to the positive (terminal) f”

end of the shell.

The column vector with elements [
. . .1 . Figure 1.- Stress resultants, moment resultant, displacements,
is nonzero if additional external middle~ and rotation of shell at boundary.
surface forces on the boundary are specified.
The effects of external loads on the ring itself are not considered in the present paper.
However, the method for taking these effects into account is derived in detail in refer-

ence 4.

The basic problem is to determine the stiffness coefficients Gij of an elastic ring
of arbitrary cross section attached in an arbitrary manner to the boundary of an arbitrary
shell of revolution so that the boundary conditions (eqs. (1)) for such a shell can be
defined. The procedure used to determine the desired coefficients will be based on the
variation of the total potential energy of the ring.

Potential Energy of the Ring

To formulate the potential energy of the ring, the displacements of any point in the
cross section of the ring are referred to displacements of the shear center. The



displacements of the shell through the thickness are then determined and the ring dis-
placements are expressed in terms of the shell middle-surface displacements in the
cylindrical coordinate system (fig. 1) by requiring compatibility of displacements and
rotations at the line of attachment of the ring to the shell and by assuming that shell dis~
placements vary linearly through the thickness of the shell. These kinematic relation-
ships are derived in appendix B. The final expressions for the displacements of a general
point in the ring cross section uy, vy, and wy in terms of the shell middle-surface
displacements u, v, and w; rotation ¢; and ring transverse shear strains Yyz and

Yyx are

-
uy(6,2) = B(6) + (z - zc)¢(0)
Z = Ze X =X
va(6,%,2) = C(6) - D(6) - F(6) @)
wa(6,%) = A(6) - (x - %) $(6) 3
where
~
A(6) = -w(6) + b1p(6)
B(6) = -u(6) - b2¢(9)
C(6) = bgv(8) + bsw'(6) + bgu’(6) + b7¢'(8) + b15¥y,(6) + b17Yyx(6) 3)

D(6) = -rsE)4v(0) + bgw'(6) + b1qu'(6) + bgo'(6) + blsyyz(e) + blgyyx(eﬂ

F(6) = 'rs['_ole'(f)) +bg'(6) + b187yx(9£]

J
and where rg is the radius of the line of shear centers of the ring cross section and the
coefficients bj are given by equations (B5) in appendix B.

The total potential energy is composed of the internal strain energy Uy, of the
ring, the potential energy Us of the forces acting on the ring, and, for pressurized rings
of closed cross section, the potential energy Up of the pressurizing gas.

Strain energy.- The strain energy for a circular ring, including the energy of
bending, extension, transverse shear, and the approximate energy of torsion and restraint
of warping, is derived in appendix C in terms of the shell variables and the ring trans-
verse shear strains, The resultis
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where r. is the radius of the line of centroids of the ring cross section, the quantities
eo and 7; are given by equations (C3) in appendix C, and bgg and bgj are given by
equations (C14) in appendix C.

Potential energy of the external forces.~ The potential energy of the external forces
applied to the ring is

2
T N T

where F,, Fy, Fp,and M, are the stress and moment resultants in the shell which

are functions of the deformations of the shell and where 13, l9, l3,and 4 contain the
contribution of the applied external stress and moment resultants at the shell boundary.

Potential energy of the pressurizing gas.- The equations developed up to this point
in the analysis are applicable to rings of both open and closed cross section. It is also
useful to extend the analysis to incorporate a pressurized ring of arbitrary closed cross
section. For such a cross section, the change in the potential energy of the pressurizing
gas must be accounted for in determining the stiffness of the ring. The change in the
potential energy of the pressurizing gas has been derived in reference 5 by utilizing the
following assumptions:

(1) The pressurized ring is considered to be a membrane in that the local bending
stiffness of the walls are neglected.

(2) The internal pressure in the ring is constant during deformation.

In the notation of the present paper and consistent with these assumptions, the potential
energy of the pressurizing gas of the ring in terms of the shell variables and ring trans-
verse shear strains is

_ 2] A2, 2 '
U, = -pA vz yx C-A L 1162, (a2 4 (B2 +2CA' Y1, db (6)
p r 9 c
0 2 2 e  2rg

where A, B,and C are given by equations (3).



Shell Boundary Conditions

Derivation of general boundary conditions.~ The equilibrium equations of the ring
and subsequently the boundary conditions of the shell can be obtained by variation of the
total potential energy of the ring. From equations (4), (5), and (6), the result is

27 My El; Ely,
6Ur + 6Up + 0Ug = S‘O N - To Oeg + |My - To €g)0n1 + (Mg - To €o/0n9 + Elxe,0ng

+ Elyeqdn, + Elgzeqdns + v

rsrc<b20¢” + bzlu")(bzoaqb" + bz16u')

GJ
+ ArG<yyzé'yyz + yyxﬁyyx> + Te rs[(bz()q,v + bg 1u'>(b205¢v

— (27 bis b17
+ b216u'>]} re dé - pAy gO ~Yyz +-1€- £ 5?’yz + “Yyx +r—2 3 57yx
C

b p b
+ S ey L1-Lg 6w+-l-( " blog'>5u + Lo + 2B
r% re T, r(z: Te Te

by 27 s 5
~—£"0 daé S !(F -l) <F -l) Fyp - I3)0w
rcg ¢ re +0 rFy - 11)0u + (rFy 2v+(rr 3)

+ (rMy - z4>5q£id9 (7)

corresponding to arbitrary variations of the shell middle-surface displacements and rota-
tion ou, 6v, Oow,and 08¢ and arbitrary variations of the ring shear strains 57yx and
57’y2' Equation (7) can be rearranged to isolate the generalized forces in the ring which
correspond to the generalized displacements u, v, w, ¢, Yyxo and Yyz: For equilib-
rium of the ring, equation (7) vanishes for arbitrary virtual displacements, leading to the
following equations which must be satisfied:

rFy £+ 1reQq =14 (Or du=0) (8a)
rFy+r.Qg =19 (Or 6v=0) (8b)
rFr + 1,Qg =13 (Or ow =0) (8c)
rMy = reQy =y (Or &6¢ =0) (8d)

10



Q5 =0 (Or Svyx = (» (8e)
Qg =0 (Or Svyy = o) (8%)

where Ql:QZ,- . -,Qg are listed in appendix D. The choice of the plus or minus signs
in equations (8) depends on the origin chosen for the shell coordinates. Equations (8a)
to (8d) become the general nonlinear boundary conditions of an arbitrary shell of revo-
lution with an attached ring provided equations (8e) and (8f) are used to eliminate the
shear strains Yyz and Yyx- Before carrying out this elimination, however, it is
appropriate to express equations (8) in a linearized form.

Linearization of the boundary conditions.- Many practical problems of aerospace
shell structures involve small asymmetric deviations away from an axisymmetric state
of equilibrium. The ring boundary conditions will be written herein in a form applicable
to such problems wherein the asymmetric linear deviation may be due to either bifurca-
tion buckling or the application of an asymmetric load. To this end, the stress and
moment resultants (Fy, Fg, Fr, and MT)>; displacements, rotation, and shear strains

u, v, w, ¢, yyx,and ’}’yz); and external loads (li> are expressed as the sum of two
parts; for example,

Fa=FaA+Fy B (9

where the term with subscript A describes an initial axisymmetric equilibrium state
and the term with subscript B is an incremental change in the term away from this
equilibrium state.

The linearized set of boundary conditions for the incremental equilibrium state
(subscript B) is obtained by substituting equations typified by equation (9) into equa-
tions (8), subtracting out the initial state (subscript A), and neglecting terms nonlinear
with respect to subscript B variables. The hoop force, moments, and strain in the ring
for the initial and incremental states were also obtained and are listed in appendix D. The
linearized subscript B variables are then taken to vary harmonically in the circumfer-
ential direction in the following manner. The quantities ug, Wwgy, qu, Fa,B: Fr,B,
Mn,B’ ll,B’ lB,B’ and 14,]3 vary in a cosine distribution; for example,

up = ugl)cos nd (10)
and VB> Yyz,Bs Yyx,B FG,B , and ZZ,B vary sinusoidally; for example,

v = vgl)sin né (11)

11



(4}

The boundary-condition equations for the incremental state can then be put in matrix form as

— . r ~ ~N
I T S TS B O
Fg,}g G11,A+G11 8. G2 A+ G2 B : G13,4*CG13,! G144+ G148} G154 * G158, G16,4 + GlG,]] “§3) 4B
-- -—— = = = = - _Il ———————— F-- - === = = === = === 1= = = = = = = = R - -- - - -
7 "Gy A +Gon i ' Gga a +Go3 s Goa A + o4 b+ Cos.a + Gos 5 ' Gag.a + G Vi) /)
9B \G2,4 + G22,B , G23,4 + G23,B1 G24,a + G24,B 1 G25,4 + G5, ! G26,4 + G26,B| | 2,8
- - - be o oo - = - . : _________ R - - - - - - - - - -
" _ _ _ — _ ' _ » (n
Fgﬁg 'Ga3,A + G33,B, G34,A4 + G34,B :G35,A +G3s5,B :Gss,A + G36,B W(Bn) 3B
---)er, R R R R ==y = {--- (12)
mn) Symmetric 'Gas p +Casn "Gas a +Gar ' Gag 4 + G o) /)
7,B Y 44 A T Y44 B Y45, A T Y45 B 1 V46,A T V46,B B 4,B
]
Tt SRR LR I
0 'Gs5,A + G55,B ,G56,A + G56,B Yﬁ),B 0
- - - | D o C - - - o - - I
- G + G )
0 . 'Gep,A + Co6,B ["yx,B L 0
J - % -/

where the —G-ij A and -éij g are given in equations (E1) and (E2), respectively, in appendix E. The subscripts A
b ’
and B refer to terms arising from the initial and incremental stress states, respectively.

For special conditions, these general coefficients simplify. For example, for a ring which has no internal
pressure, has no restraint of warping, has the shear center and centroid coincident, and is attached at the centroid
to the middle surface of the shell, equations (12) reduce to
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If it is further assumed that Iy, = 0, equations (13) become, after some rearrangement,
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Equations (14) are convenient for use in a subsequent section to compare results from the present theory with well-
known results in the literature for in-plane and out-of-plane ring buckling.

Final form of linearized boundary conditions.- To obtain the stiffness coefficients for the ring in the form of

equations (1), the shear strains 7§7 )B and y(n) B must be eliminated from equations (12). The last two equations
of equations (12) give

\

S0 a56<6'16u§3) + Bpevly) + Bggwiy) + Gy )> 66(G15 B+ Gogviy) + Gggul) + ‘~3‘45¢gﬁ

yzB ~2
Gp5Ge6 - Gag
L (15)
& (& .o & 0 & 0 = (n)) < (n) (n) (n) (»
L) _G56<G15uB + Gogvp” + Gypwy + Gygdp’) - GpglGrgup + Gogvp’ + GagWy + Gygd
"y%,B GrsGag - G2
55Ge6 = G56
J
where
Gi' G1],A+G1], (16)



Substitution of equations (15) into the first four equations of equations (12) leads to the

desired stiffness coefficients in the form of equations (1) where

7

~2 5 o o 2
~G158g6 + 2815814856 - G16Css

~

=~ =2

Gs5Gge - G5

r o L
R GliG56G26 - Grfsec'zs) + G16<G56G25 - G55G26>

Gig = Tc|Gyp +

~ ~2
N G55Ge6 - G56 |

~

Gyr(GrnGap = GonGar) + GqalGraCG

= 15( 56036 ~ U6 35> 16( 56035 ~ G55C 3)

Gig = Tc|Gyg + U

- Gs5Ge6 - G56

| G15<G56G46 - G66G45) + G16<G56G45 - G55G46>

Gip =relGqy +
14 = Tc|Gyq o~ o

- G55Ggg - Gi6 -

~9 ~ o~ ~9 o~
-Gy5Ggg + 2Gg5GoG56 - Goglss

~ ~ ~2
G55Gg6 - Gsg $

Ggg = Tc|Gog +
| st(GssGss G66G35>+G26(G56G35 55G36>

Gogq =Tal|Gqq +

93 = Tc|Gg3 . .o

L Gg5Gge - Gog i

o e Ny

PR G25(G56G46'G66G45)+G26<G56G45'G55G46)
= +

924 = Tc|Ggy Y~ 3

Gg5Gg6 = Gse i

~2 ~ ~ ~2
~G5Ggg + 2G35G34G5g - GagGss

G55Gge = G
Gy (G56G46 - G66G45) + G36(G56G45 55G46>

~ 2
GG - G

~2 ~ o~ o~ ~9 ~
~Gy5Ggg + 2G45G46G56 - G46C55

~ = 2
G55G66 ~ G56 J

G44 = I‘c G’44 +

(17)

If transverse shear strains in the ring can be neglected, equations (17) still define the
stiffness coefficients of equations (1) where now
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Gyg = Gyg = Ggg = Ggg = Gg5 = Ggg = Gy5 = Gyg = 0

The form of equations (1) is appropriate for computer programs if the shell behavior is
defined in cylindrical coordinates. The transformation required for shells defined in the
intrinsic shell coordinates is given in appendix F.

DISCUSSION OF RESULTS

Boundary-Condition Equations

Equations (1) are the general boundary conditions for an arbitrary shell of revolu-
tion with an elastic ring of general cross section rigidly attached at the shell boundary.
These equations as developed in this paper can be used for the stress analysis of sym-
metrically or asymmetrically loaded shells with a symmetrically prestressed ring
attached at the shell boundary. The terms [j represent the external loads, if any,
applied at the shell boundary.

When the equations are applied to stability problems, the external loading on the
shell must be symmetric so that the prebuckling stresses and deformations of both the
shell and the ring are also symmetric. (This restriction, of course, does not imply that
the buckling deformations must be symmetric.) The prestress terms in the stiffness
matrix are now obtained from the axisymmetric prebuckling solution. Also, for buckling
problems, the [ are always zero if the external loads on the ring are zero.

An exception to the previous discussion must be noted for the special case of the
pressurized ring. For the pressurized ring, the boundary conditions given by equa-
tions (1) are valid only for axisymmetric stress analysis and symmetric or asymmetric
buckling analysis. Equations (1) are not valid for asymmetric stress analysis of a pres-
surized ring because of the way in which the internal pressure terms were handled in the
perturbation procedure. (When nonhomogeneous terms appear on the right-hand sides of
egs. (8), eqgs. (10) and (11) are not valid solutions for n > 0.)

Buckling Solutions for a Ring

To check the validity of the ring stiffness coefficients developed in this paper,
selected ring buckling calculations were carried out for a ring of doubly symmetric cross
section subjected to a constant radial line loading q. Equations (14) are in a convenient
form to consider both in-plane and out-of-plane buckling. The axisymmetric prestress
deformations are obtained from equations (14) by setting n = 0, letting 131,1]3 = —rcﬁ, and
replacing the subscript B with A so that
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(18)

Yyx,a =0 )

The other two prestress deformations vp and u, vanish from axisymmetry and lack
of rigid body motion, respectively. The prestress strain, hoop force, and moments may
be determined by substitution of equations (18) and (3) into equations (D4) which yields

are )
e -
0,A El,
EAr + —
r
C
Np = -ar
(19)
EL.Q
M, , =- x4
X,A EIX
EAr + —_—
r
M, o =0 J

Since in the formulation of the buckling problem the incremental loads are zero, the deter-
minant of the coefficients of the displacements of equations (14) must equal zero. Because
MZ A is equal to zero, in-plane buckling and out~of-plane buckling are uncoupled.

b

In-plane buckling.- The in-plane buckling solutions are obtained by setting the
determinant of the coefficients of the in-plane variables of equations (14) equal to zero.
A first-order approximation to the critical load is obtained by retaining only the linear
terms in q in the expansion for the determinant. For the lowest buckling mode, n =2,

this expansion yields

~ .3
ar,

Elx

= 4 (20)
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where
EArr2
T = <
EIx

Y
GArr%

OEIy

The critical load as determined by equation (20) agrees with the result given by
Ratzersdorfer (ref. 6) when S — =,

Out-of-plane buckling.- The out-of-plane buckling solutions are obtained by setting
the determinant of the coefficients of the out-of-plane variables of equations (14) equal to
zero. Again a first-order approximation to the critical load is obtained by retaining only
the linear terms in q in the expansion. For the lowest buckling mode, n = 2, this
expansion yields

qr
EIc=i' I ° ] (22)
z 4+l+-8—— 1 4+—1-+£+ 3 —1-(-4f+6g)+ 3
Y S T+1 Yy 1S T+1 Zflp ZfZS
where -
_g1 )
El;
EI
=% (23)
EI,
El; + EI,
g =
EI,
y

When T -« and S — «, equation (22) reduces to the classical solution contained in
reference 7.

Application to the Stress Analysis of a Conical Shell

To illustrate the application of the ring theory to a shell problem, the boundary-
condition matrices were used to solve a representative shell stress-analysis problem.
The problem chosen is a conical shell subjected to a normal pressure loading q which
is constant along the meridian and varies harmonically around the circumference of the
shell (fig. 2(a)). Thus, q=gq, cos nf where q; is a constant. This loading is appro-
priate because a general asymmetric load on a shell of revolution can be expanded into a
series of such components.
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The shell is simply supported at the small end (that is, all displacements and thé
meridional bending-moment resultant vanish) and contains a Z-section ring rigidly
attached at the large end. The properties of the ring are shown in figure 2(b).

r=20in. (50.8 cm)

h=0.1in. (0.254 cm)

r=5in.
(12.7 cm)

Shell meridian

N A

No eccentricity Positive eccentricity Modified simple support

Detail A

(a) Geometry of conical shell with detail of various ring attachment positions.

A =0.92 in (5.94 cmd)

2 _ .4 4
.188in. (476 cm) ‘ |11 =0.446 in" (18.56 cm )
—————— ) 4 4
) T 1y = 0.551 in” (22,93 cm®)
! # o LT 1o =039 in" (-16.32 e}
(4.44 cm) 4 4
J=0.012in" 0.50cm™)
M _ _ 6 6
M=0.148in" (39.74cm")
2 6 . 2
E=30x 10" psi (207 GNIm)

6 = 10 x 10%si (68.9 GNImd)

(b} Properties of ring.

Figure 2.- Geometry of conical shell and edge-stitfening ring.
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Results were obtained from the computer program of reference 8 for the distribu-

tion of the nondimensional shell variables,

mn=

ty

Wn-

45%0

M (n)
_n_
aph?

N

n

ano

Eh_ g0

2

where rg is the radius of the middle surface of the conical shell at the large end.
Poisson's ratio was taken to be 0.3 in the calculations and the shell and ring were made

of the same material.

The amplitudes of meridional moment resultant, meridional stress

resultant, and normal displacement as functions of distance from the stiffened edge (up to
0.6 of smax) are shown in figures 3, 4, and 5 for the Fourier indices n =3 and 8. The

effects of eccentricity are shown in the figures for the ring centroid attached to the shell
(zo = 0) and for a leg of the ring attached to the outside of the shell (zo = 0.925 inch

(2.35 cm)).

800

600
7p=0

00 2,=0.925in. (2.35 cm)

Mn

200

200 Modified simple support
400 T S S T TR TR TN NS W SR R
o a1 .2 3 4 5
s/Smax
(a) n=3,

Figure 3.- Nondimensional meridional

moment resultant m,

400

350

300

250 _
7,-0

200 25 = 0.925 in. {2.35 cm)

150

Modified simple support

~150 i 1 L 1 1 1 | I 1 [ 1 |
0 .1 .2 .3 .4 .5 .6

S'Smax
(b} n =38,

as a function of distance from stiffened edge of conical shell

which is subjected to external pressure,
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ir 8
0 P 4 b
-4 0
Modified simple support |
Z5=0
~8 ~4r 2= 0.925 in. .35 cm)
ty T o
-2 | -8
-16 |- -1.2
B 75 =0.925 in. 0
2.0 (2.35 cm} L6 F
. B Modified simple support
-2.4 i | I | 1 1 | - ! 1 { J -2.0 1 1 1 1 ] A J 11
0 .1 .2 .3 N .5 .6 0 .1 .2 3 .4 .5 .6
S'Smax sISmax
(@ n =3, b} n=38,
Figure 4.- Nondimensional meridional stress resultant th asa function of distance from stiffened edge of conical shell
which is subjected to external pressure,
10 ( 5 F
0 0
~ Modified simple support - z5=0
-10 -5+ Zy = 0.925in. (2.35cm)
wn - Wl'l =
-20 . -10 |~
% z5=0.925 in. (2.35 cm)
_15 -
-20 -
Modified simple support
_25 —
-60 1 1 | 1 1 1 1 | ! | J -30 11 1 1 1 1 { 1 L | S| |
0 .1 .2 .3 4 .5 .6 0 .1 .2 .3 .4 .5 .6
s/Smax S/Smax
(a) n=3, (b) n=8,

Figure 5.- Nondimensional normal displacement w. as a function of distance from stiffened edge of conical shell which
is subjected to external pressure.



Results are also shown in the figures for the shell with the same boundary condi-
tions at the small end and with boundary conditions denoted as "modified simple support"
at the large end. The modified-simple-support boundary conditions are (see fig. 2(a)) as
follows: Radial motion is restrained, movement in the direction of the axis of the cone is
unrestrained, meridional moment vanishes, and circumferential displacement vanishes.
These boundary conditions could be used to approximate the contribution of a stiff ring to
shell behavior.

Results were also obtained for the same ring-stiffened shell problems by using the
ring boundary conditions contained in reference 1. The calculations based on the ring
theory of reference 1 agree with the present calculations to within 5 percent and conse=~
quently are not shown in the figures. Further comparisons of results obtained with the
two theories are given in reference 5.

Plots for n =3 in figures 3, 4, and 5 show that taking into account the eccentricity
of the ring can cause appreciable changes in the behavior of the shell. Ring eccentricity,
however, was not important for n = 8. The results also show that the modified-simple-
support boundary conditions for the shell are poor approximations to the behavior of the
ring-stiffened shell. The approximation for stress resultants appears to be better than
that for displacements and moments.

CONCLUDING REMARKS

The contributions of ring stiffness to the boundary conditions for asymmetric
behavior of a prestressed shell of revolution have been derived for an elastic ring of
arbitrary cross section rigidly attached to the shell boundary. The ring behavior includes
the effects of shear deformation, restraint of warping, ring torsion, out-of-plane bending,
internal pressure, eccentricity, and axisymmetric prestress. The results for the ring
stiffness matrix are presented in a form that is well suited for inclusion in a computer
program for analysis of shells of revolution. The ring stiffness effects are applied to the
sample case of a conical shell stiffened at one end by a ring and subjected to an asym-
metric load. The results show that it is important to include properly the ring effect and
ring eccentricity in order to determine accurately the stresses in the shell.

Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 9, 1969.
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APPENDIX A
CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General Confer-
ence on Weights and Measures, Paris, 1960 (ref. 3). Factors for converting the U.S.
Customary Units used herein to the International System of Units are given in the following
table:

Physical quantity U.S. Customary C°§§’§t2?°“ SI Unit
Uit (%) ()
Area. .. ... .... in2 6.452 x 10-4 meters2 (m2)
Length. ........ in, 2.54 x 10-2 meters (m)
Moment of inertia . . . in4 4.162 X 10=7 | meters? (m4)
Stress . ... ... .. psi = lbf/in2 6.895 x 103 newtons/meter2 (N/m2)
Warping constant . . . in6 2.685 x 10-10 | meters® (m6)

*Multiply value given in U.S. Customary Unit by conversion factor to obtain equiv-
alent value in SI Unit.

**Prefixes to indicate multiples of SI Units are as follows:

Prefix Multiple
giga (G) 109
centi (c) 10-2
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APPENDIX B

DERIVATION OF THE KINEMATIC RELATIONS FOR A CIRCULAR RING
ATTACHED TO A SHELL OF REVOLUTION

The kinematic relations are derived for a circular ring of arbitrary cross section
undergoing shear deformations and rigidly attached to the surface of a shell of revolution.
These relations are then expressed in terms of the middle-surface shell displacements
and rotation in a cylindrical coordinate system by requiring compatibility of the ring and
shell at the point of attachment. (A more detailed analysis may be found in ref. 5.)

Displacements of a Point in the Cross Section of a Circular Ring

The coordinate system to be used for the ring (fig. B1) is as follows: a coordinate
X normal to the plane of the ring, a coordinate y along the shear-center axis of the
ring so that y = rg6, and a coordinate z measured radially inward from the shear cen-
ter. The subscript s refers to the shear center. The displacement vector at any point
in the ring is made up of the displacement
components uy, vy, and wy in the direc- B
tions X, y,and 2z, respectively. The - /

rotation B is assumed to be positive clock- Mrs

wise about the y-axis through the shear cen- ' X, Ug
ters. (The positive rotation vector is tangent ¢ ¥y
to the ring circumference in the plane of the Axis of shear centers

ring and in the direction of increasing 6.) ) , _

Figure Bl.- Ring coordinate system.
In defining p, the thickness~compression
strains ey and e, are assumed to be zero so that the projection of the deformed ring
cross section into the xz-plane remains invariant during deformation. Note that this
assumption does not preclude a warping displacement normal to the xz~-plane. Consistent

with this assumption, the shear strain ey, is taken to be zero throughout this analysis.

The displacements u,, vy, and wy for moderately small rotations are, to first
order,

u,(z,6) = ug(6) + zB(6) (Bla)
_Ts - Z . X

Va(X,Z,G) = VS(G) = }_S— Ws(e) = r—S us(e) = z'}’yz(e) = nyx(e) (Blb)

wa(x,6) = wg(6) - xB(6) (Blc)
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APPENDIX B — Continued

where the last two terms for v, in equation (B1b) are the effects of transverse shear
deformations of the ring. (See ref. 5.) Note that equations (B1) do not include a contri-
bution from warping of the cross section. This contribution is considered separately in

appendix C.

For a thin shell, the displacements in a cylindrical coordinate system (fig. B2) are

® i up(9,77,2) = u(G:Tl) + a5Z~¢)(9,77)
N o~
3 r W Vp(gynyz) = V(9,77) + ZE-1W'(9,77)
A (B2)
| v +agu'(6,n) + agv(6,n))
R
6
& wp(6,1,2) = W(6,1) + agZp(6,)
Shell meridian
' N where
/ Shell middle surface 1
Detail A a; = "Ry ag = -4
a4 =rag (B3)
Figure B2.- Cylindrical coordinate system for arbitrary dr/d
shell of revolution. ag = ____r/ d ag = -raj
r

and r is the radius of the shell middle surface and R g 1s the radius of curvature
which generates the shell circumference. Here, up, vp, and Wwp are shell displace-
ments in the axial, circumferential, and radial directions, respectively, at a distance Z
from the shell middle surface, and u, v,and w are the corresponding displacements
at the middle surface.

Compatibility of Ring and Shell Displacements at the Shell Boundary

The ring displacements given by equations (Bl) are now expressed in terms of the
shell variables given by equations (B2) by requiring the displacements and rotation of the
ring and shell to be the same at the point of attachment. (See fig. B3.) The line of attach~
ment of the ring to the shell is at 7 = Constant. Therefore, at the point of attachment,
the following conditions must be satisfied:

~
ua(e,z) = ’up(eynyi)
Va(Q,X,Z) = Vp(9,71,5)

Wa( 9,X) = 'Wp( o,m 92)

B6) = ¢(6)
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APPENDIX B — Continued

r -]

Shell middle surface

Figure B3.~ Geometry of attachment of ring to shell. (Ring is attached to shell at 7 = Zgh = h/2.)

Here zgp is the distance measured normal from the shell middle surface to the point of
attachment, and X and Z are the axial and radial distances from the shear center of
the ring to the point of attachment, By means of equations (B2) and (B4), the displace~
ments at any point in the ring cross section uy, Vg, and Wy can be expressed in terms
of the shell variables and ring shear strains. By grouping in powers of x - X, and

Z - Zg, the result is as given by equations (2) and (3) in the body of the paper where

b1 =X - X¢ - a4Zgp (B5a)
bg = Z - z¢ + agZgh (B5b)
r
bg = = S z(1 + a3zsh) (B5c)
s
b
bg = -_1% (B5d)
r =\ z
bg = —C - Z) . € B5e
5 rS . z<a.1zsh rs> + rs ( )
_ . _z), 1
b6 = T - Z(alzsh rs> + Ts (B5f)
_1/= reZ 1/~ 'rci
by = F;(x - a4zSh)<rS — - z(> + ?s-<z + a5zsh><rs —+ xc> (B5g)
1 /= Z X &
b=——-x-az> =+ 1§ + _(z+az> B5h
8 rs( 47sh <rs -z > rs(rs -z 5%sh (B5h)
by = rls(z + a5zsh) (B5i)
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APPENDIX B — Concluded

Te X Xe
big = —(agZgh - — |+ —
10 rs_z<25 rs) Ts

1 X
b3y = -<azzsh - r—>

rg ~ Z s

1
b12 =g
b13=0
b14 =0

r

c -
big = - Z -2
15 Tg - 2 c
b16=-r - -1

s

re -

b = X -X
17 rg - Z c
b1g = -1
b1g = -—=

s

(B5j)

(B5k)

(B51)

(B5m)

(B5n)

(B50)

(B5p)

(B5q)

(B5r)

(B5s)

In equations (B5), x. and 2z, are the axial and radial distances, respectively, from the
shear center to the centroid of the ring, and r. is the radius to the centroid (fig. B3).
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APPENDIX C
STRAIN ENERGY FOR A CIRCULAR RING IN TERMS OF SHELL VARIABLES

Strain Energy of Bending and Extension

The nonlinear strain—displacemeﬁt relation for the circumferential strain at any
point in the ring in terms of the ring displacements (ref. 9) is, in the notation of the pres-
ent paper,

N

By substituting equations (2) into equation (C1), the circumferential strain of the
ring is expressed in terms of the shell variables and ring shear strains. If higher than

second-order terms in z and X are neglected, the result is

ey =€ + (z - ze)ny + & = Xe)ng + (2 - zc)2n3 +(x - xc)2n4 + (X - %)z - ze)ng  (C2)

where
x —
eO = _1 + A (C3a)
Te 2rg
A A oY A
nl—-V—E+E+B + A (C3b)
Te r2  9p2 r3
c c c
rx3  C
Ny = =e———— + —— (C3C)
2 Te 2r%
re ra 2rc ry re
Ny = (C3e)
2r2
c
iy — —
7,5=-_\'__§+_E_+£ (C3f)
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APPENDIX C — Continued

and where

Pa=r - 0
A=(B"+(C +A')2

B =2B'¢' -2 -1%(0 +AY) (C4)

C=-2(C + A')<;11 + ¢>
S

_ 2
B=(p)?+ 22
s
2
_(F )
E-(f )
_o9 D/F )
F—ZEG‘S+¢>
J

In equations (C4) the variables A, B, C, D,and F are given by equations (3).

The strain energy for bending and extension of the ring due to the circumferential

strain ey is
o1 =F§, v -3 Sanlre - @ - zefas ()

where V is the volume of ring material. Equation (C5) is expressed in terms of the
shell variables by using equation (C2). Integration over the cross section of the ring
yields

27

E 2 2 2 2 €072
Uy = 5 0 Areg + Ix<n1 + 2nge, - r_c e0n1> + Iz<172 + 2eon4> + ZIxz<eo775 +My7g - rc> r.de

(C6)

30



APPENDIX C — Continued

where use has been made of the following standard definitions of moments of inertia and

area:
~

[T,
r
S‘Ar(x - xc)dAr =0
SAr(z - zc)dAr =0
( ()

Ja
Sa

Ja

Equation (C6) can be expressed in terms of the ring hoop force and moments. First,

(x - xc)szr =1,
r

(v - zc>2dAr - Iy

<x - Xc) (z - zc)dAr = Ixy
r /

~N
Ar

My = S‘A Eey(z - zc)dAr \ (Cc8)
T
M, = ‘S‘ArEey(x - xc)dAr/

where N is the ring hoop force and My and My are the ring bending moments about
the x- and z-axes, respectively. Then, equations (C8) are integrated by substitution of
equation (C2) into equations (C8) and by making use of equations (C7). The result is

-
N = E(Areo +Ixng + Izng + Ixzn5>

My = E(Ixﬂ1 + Ixzng)

My, = E(Izﬂz + Ixz771>

(C9)

—
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APPENDIX C - Continued

Finally, equations (C9) can be incorporated into equation (C6) to give the strain energy
of the ring resulting from extension and bending as

27(2Ne e M M,
- E o._ 2_2 %0 . o
Ui=3 o <E Ared - E My +—- M + 5 7g)Tc 46 (C10)

The first two terms of the integral in equation (C10) represent the energy associated with
stretching of the ring centroid line, the last two terms represent the energy associated
with the in-plane and out-of-plane bending, and the third term represents a coupling of
the bending and extensional behavior caused by ring curvature.

Strain Energy of Restraint of Warping

A rigorous development for the strain energy of restraint of warping would require
a knowledge of the distribution of the warping displacements over the cross section of the
ring and would constitute an extremely detailed and complicated analysis. Since restraint
of warping is not a primary effect in ring behavior, a first approximation to restraint of
warping was felt to be adequate for defining shell boundary conditions. This first approx-
imation of the strain energy of restraint of warping is in the same form as that for a
straight beam (ref. 7); namely,

27
EI 2
Uy = ! de C1

where € is the twist of the ring with respect to the shear center and I' is the warping
constant of straight-beam theory. Values of I' for cross sections of various shapes can
be found in numerous structural handbooks. It might be noted that reference 10 also
obtained the expression for strain energy of restraint of warping of a ring by making cer-
tain simplifying assumptions on ring behavior.

The twist of the ring (ref. 7) is expressed in the notation of the present paper by

1 /0w, 1
=r—S<B +r—sus> (C12)

which is expressed in terms of the shell variables by use of equations (2), (3), (B4),
and (B5). The result is

¢ = bzo(;b' +bgqu’ (C13)
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APPENDIX C — Continued

where

bog = }1;(1 - bg)
(C14)

Substituting equation (C13) into equation (C11) gives the strain energy of restraint of
warping in terms of the shell variables; namely,

27
ET 2
Uy = 5 bond'" + boqu'')2r.. do (C15
2™ Zrorg Y0 (o200 21u") re )

Strain Energy of Shear

In this analysis, the strain energy of shear is

o3-S (B + egx)Ec (e - zcﬂdAr a6 (c16)

where V is the volume of ring material. It is convenient to integrate equation (C186) by
separating the total shear strains into two parts — one part due to bending which is a
function only of 6 and another part due to torsion which is a function of 6, x, and =z.
The result is

eyZ -sz(e) + ?yz(G,X,Z)

(c17)

i

eYX -ny(e) + -'}-/yx(e,x,Z)

where the Yyz and Yyx are the shear terms resulting from bending (the same as those
used in egs. (B1)) and the ?yz and ?yx are the remaining shear terms resulting from
torsion. By substitution of equations (C17) into equation (C16), the strain energy of shear
becomes

ArG S-Zﬂ 9 9 G S* _ - 2 2
= 0 4+ = - -2
Us 2 Jo <7yx *+ Yy, re do + 5 V( Zyyz vz YoxVyx * Yyz * Yyx dv  (C18)

where V is the volume of ring material. The first integral on the right-hand side of
equation (C18) represents the strain energy due to bending whereas the second integral
represents the strain energy due to torsion plus a coupling of torsional and bending shear.
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APPENDIX C ~ Concluded

Clearly, these coupling terms are zero if the torsional strains are zero. Hence, if the
coupling effect is neglected, the last integral reduces to the strain energy of pure torsion.
As in the case of restraint of warping, a rigorous development of this part of the strain
energy would necessitate a detailed study in itself. It is felt that this detailed study would
not add materially to the results of the analysis and, consequently, the following simpli-
fied expression, similar to that used in straight-beam theory (ref. 7), is used for the
strain energy of torsion:

27
_GQJTs 2
Utorsion =3 Te ‘S‘O §%r, do (C19)

so that the total strain energy of shear now becomes

ArG 21/ 9 o GJ Ts (27 2
U3 = -—2— <’}’yz + 'yyx rc doé +-—2—;(-:' 0 <b20¢' + bzlll') rc do (C20)
where J is the torsional constant of straight-beam theory.

In summary, the total strain energy for a ring of arbitrary cross section rigidly
attached to a shell of revolution is given by the sum of equations (C10), (C15), and (C20).
The result is given by equation (4) in the body of the paper.,
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APPENDIX D
LIST OF FUNCTIONS

The following is a partial list of functions which are referred to in the main body of the paper and are included
for completeness:
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APPENDIX D — Continued

where
\
_ X¢ byp
Pr=Pe -l P13 " Fors * o
p14. - Te
p3=0 p15=b17_xc
Pg = by Te
bg -~ 1 pP1g =bg - 1
p =
5 e Pyq = b4
by
p6=b8 +—r—c- p18=b5r- 1
c
b = i Zxc blO & (D2)
e P19 = t
Tefs Te
1 2bg
P8= "% 3(o
c +b
pzo = 2b8 + l_lrc—7)
2(bg + br)
Pg = bg + ch’_ , _ 302
P21=4 -5
P10 = Torg ) bys - 2rg
P22 =ve
Ts
T b17 - 2x¢
P23 = —F¢
Xc
P12 = =1¢
~
and
E=C + A"
(D3)
_F
A=zt 9!

The terms bj,bg,. . .,bg; are given by equations (B5) and (C14); the terms A, B, C,
D, and F are given by equations (3).

37



APPENDIX D — Continued

The strain, hoop force, and moments in the ring for the initial equilibrium state are

Ap
€0,A = "7,

E Iy Ixz
NA =i_z —AA<AAr +§>+ ¢A—I‘.z‘

c
? (D4)
My g = E(-Ap X4 g,
X,A =T\ AA T, t b Alxz
M. = —:Ei -A E{E + (1) I
2,A = T, Tc A'z
The hoop force and moments in the ring for the incremental equilibrium state are
~

Np = K1v + Kawy + K3up + Ky + Kgwy + Kgpp + Ky, g + KS'Y;’X,B

~"

Mx,B = Kgvp + K1owg + Kyjug + Kyaép + K13Wp + Ky4¢6p + K157, g + K167y, B

Mz B = K17V]'3 + Kjgwp + Kigup + KZO‘P]% + Kg1wp + Kogop + K23'y§z,B + K24'y§,x,BJ

(D5)

where the K; are given by
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APPENDIX D — Concluded

Ely, EL,
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N
= A
G14,A = n2 -—é—Kbl + b7)b10 + bé] + —’—-2

APPENDIX E

COEFFICIENTS OF RING STIFFNESS MATRIX

A listing is provided of the coefficients for the ring stiffness matrix which appears in equations (12).

coefficients which are a function of the initial state A are
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The prestress quantities appearing in equations (E1) are defined in equations (D4) and the constants b; are defined
in equations (B5) and (C14). '

The coefficients which are a function of the incremental state B are:
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APPENDIX F
FORMULATION OF BOUNDARY CONDITIONS IN INTRINSIC COORDINATE SYSTEM

The boundary conditions given by equations (1) are expressed in a cylindrical
coordinate system and the shell variables are also in that coordinate system. However,
the boundary conditions are usually difficult to use in this form in connection with shell
programs that utilize normal and tangential displacements as variables. A more con-
venient form is to express these boundary conditions in the cylindrical coordinate system
in terms of the shell variables in the intrinsic coordinate system.

From figure F1, it is noted that the stress resultants and middle-surface displace-
ments in the cylindrical coordinate system are related to those in the intrinsic coordinate

Fa, u
, U
Nn
a
F ,w .
r
Qn. W
! l
£ Shell meridian ¢ Shelt meridian

(a) Cylindrical coordinate system. {(b) Intrinsic cocrdinate system.

Figure F1.- Displacements and stress resuttants in cylindrical
and intrinsic coordinate systems,

system by the following equations:
Fag =-Q cos a+ Ny sin o
Fr =N77 cos oz+Q17 sin «
(F1)

=Usina- W cos &

w=Wsina+U cos ¢

The circumferential displacement and rotation, as well as the stress and moment resul-
tants Fy, and MTI’ are the same in both coordinate systems.
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By perturbing equations (F1), by subtracting out the initial equilibrium state (subscript A), and in addition by
defining

(n) )

Q'q,B = Q'n,B cos nfd

Ny 7 = N4 cos n
7,B = “n,B

(F2)
)

ﬁB = ﬁgl €os no

\N’VB = ﬁgl)cos no )

the boundary conditions in the cylindrical coordinate system in terms of the shell variables in the intrinsic coordi-
nate system can be written as

— = R m ~ Y
1
sma:O:-cosa:O rNT(:I%3 G11 sin a + Gy3 cos a:Glz:-Gll cos a+ Gqg sin @1 Gyg r'{ig‘) ‘(1]%3
[ 1 b
S [ [ R e oL .- .- -
R h i . ' - -
0o '1' O :0 F(Gnga G21 sin o + Gog3 cosa:Gzz:—G21cosa+G23sina:G24 vgl) lgné
r____:.._:___..x._e__,_>i__-_____-____'___' _____________ :.-_<___ =<--’_
! 1 1 ! 1
: (n) 5 1 (- : ! "'(n) (n)
cosa:O:sma :O Qn,B G3151noz+G33cosozlG32I G3p cos @+ Ggg sin o | G4 Wy l3,B
e e 1 4o e e e m e e e e oo - - Lo === - -
1 t I
0 :0: 0,1 M Gyq sin o+ Gg3 cos @ 1 Gyg 1 -Gyq cos @ + G43 sin a ' G44 ¢(n) l(n)
v . n,B ' ] ! LB 4,B
(F3)

In some instances, it may be advantageous to express the boundary conditions in the intrinsic coordinate sys-
tem and in terms of the shell variables in that intrinsic coordinate system. By eliminating the coupling terms in the
coefficient of the force vector in equations (F3), the following new form for the boundary conditions is obtained:
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